

ANTI-*Leishmania infantum* ACTIVITY OF ACETOGENINS FROM *Porcelia macrocarpa* (ANNONACEAE)

Dorca Ferreira^{1*}, Ivanildo A. Brito¹, Thais A. Costa-Silva², André G. Tempone²,
 João Henrique G. Lago¹

dorca.ferreira@ufabc.edu.br

¹Center for Natural and Human Sciences, Federal University of ABC, Santo André, SP, Brazil.

²Laboratory of Pathophysiology, Butantan Institute, São Paulo, SP, Brazil.

Visceral leishmaniasis is a neglected disease with a significant public health impact, with approximately 30,000 new cases reported annually¹. In this context, discovering new drugs to treat this disease is crucial. As part of our ongoing research on *Porcelia macrocarpa*,² five chemically related acetogenins (**1–5**, Figure 1) were isolated from the seeds of this species. ¹H NMR spectra of **1–5** showed characteristic signals of the γ -lactone ring at δ 2.56–2.57 (dt, J = 9.9 and 4.8 Hz, H-2), 4.30–4.38 (dd, J = 4.8 and 3.1 Hz, H-3), 4.44–4.45 (dq, J = 6.5 and 3.1 Hz, H-4) and 1.43 (d, J = 6.5 Hz, H-5).² To compounds **1–4**, a triplet at δ 2.13 was also observed, assigned to the propargylic hydrogens H-10' and H-13'. Additionally, in the ¹H NMR spectra of **2–4**, were observed signals at δ 5.80–5.81 (ddt, J = 16.9, 10.2 and 6.6 Hz) and 4.95–4.96 (m), indicating the presence of a terminal double bond in the side chain. These signals were absent from the ¹H NMR spectra of compounds **1** and **5**, which showed one broad singlet at δ 1.27 and one triplet at δ 0.85 (J = 6.8 Hz), which is characteristic of a terminal methyl group.² Analysis of ¹³C NMR spectra of **1–5** confirmed the presence of γ -lactone ring due to the signals at δ 177 (C-1), 47 (C-2), 71 (C-3), 78 (C-4) and 13 (C-5). In the ¹³C NMR spectra of **1–4**, were observed signals at δ 81 (C-11') and 80 (C-12'), characteristic of sp carbons, while spectra of **2–4**, signals at δ 139 and 114, characteristic of terminal double bonds were detected. On the other hand, except to the signals of γ -lactone ring, no signals of sp and sp² carbons were observed in the ¹³C NMR spectrum of **5**, indicating a saturated side chain. Analysis by ESI-HRMS showed [M+H]⁺ ions at *m/z* 393.3382 ($C_{25}H_{45}O_3$, **1**), 391.3227 ($C_{25}H_{43}O_3$, **2**), 363.2900 ($C_{23}H_{39}O_3$, **3**), 419.3522 ($C_{27}H_{47}O_3$, **4**) and 397.3681 ($C_{25}H_{49}O_3$, **5**). Additionally, fragmentation patterns at *m/z* 143, 255 and 307, observed in the MS/MS spectra, indicated that the triple bond in compounds **2–4** are located at C-11'. Initially, no toxicity against NCTC cells was observed for compounds **1–5** ($CC_{50} > 200 \mu M$). Their antileishmanial effect was then evaluated *in vitro* against the amastigote form of *L. infantum*. Among compounds with a C_{20} side chain, **2** displayed activity ($EC_{50} = 23.5 \mu M$), while **1** and **5** were inactive ($EC_{50} > 150 \mu M$). These results suggest that the terminal double bond in the side chain plays an important role in activity. Based on this profile, the effects of **2–4** on *L. infantum* suggested that elongating the side chain (C_{22} - compound **4**) decreased activity ($EC_{50} > 150 \mu M$), while reducing it (C_{18} - compound **3**) enhanced the potency ($EC_{50} = 11.3 \mu M$). Interestingly, compound **3** showed similar effect of that determined to the positive control, miltefosine ($EC_{50} = 17.8 \mu M$). Therefore, these data suggest that the antileishmanial activity of acetylenic acetogenins depends on a combination of double and triple bonds in the side chain and an appropriate side-chain length.

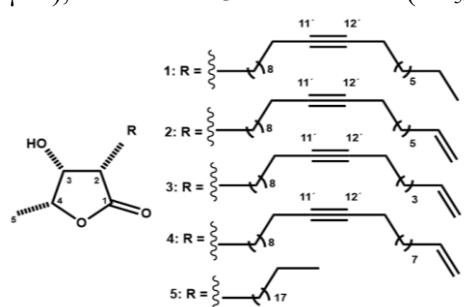


Figure 1. Molecular structures of the acetogenins **1–5** isolated from *P. macrocarpa*

Keywords: *Porcelia macrocarpa*, acetogenins, antileishmanial activity.

References: ¹WHO, *Leishmaniasis* 2023; ²Brito et al., *Phytochemistry* 2025, 231, 114360.

Acknowledgments: CAPES, CNPq, and FAPESP.

